IPv6 RIPng和RIP 度量值分析

  RIPv2和RIPng都使用值1-16(表示跳数)的度量,最大跳数为15,16表示不可达,在收到路由更新时路由器会递增该度量值,但RIPng和RIPv2的处理方法有重大区别,下面通过实验进行分析;

  IPv6 RIPng和RIP 度量值分析

  R1、R2、R3之间运行RIPng,路由配置如下,其它配置略;

  R1的路由配置:

  R1(config)#int loo 0

  R1(config-if)#ipv6 ripMao enable //RIPng进程Mao只起本地意义,与OSPF的进程号功能相同;接口下配置该命令后,会在全局下生成ipv6 router rip Mao

  R1(config-if)#int s1/0

  R1(config-if)#ipv6 rip Mao enable

  R1(config-if)#int fa0/0

  R1(config-if)#ipv6 rip Mao enable

  R2的路由配置:

  R2(config)#int loo 0

  R2(config-if)#ipv6 rip Ting en

  R2(config-if)#int s1/0

  R2(config-if)#ipv6 rip Ting enable

  R2(config-if)#int fa0/0

  R2(config-if)#ipv6 rip Ting enable

  R3的路由配置:

  R3(config-if)#int fa1/0

  R3(config-if)#ipv6 rip

  R3(config-if)#ipv6 rip Hai en

  R3(config-if)#int fa0/0

  R3(config-if)#ipv6 rip Hai en

  R3(config-if)#int loo 0

  R3(config-if)#ipv6 rip Hai en

  在R1与R3之间抓包分析;

  IPv6 RIPng和RIP 度量值分析

  抓包可知,R1在通告路由时,将2011::1/128(R1的环回接口ipv6地址)的跳数设置为1,现在R3上查看该路由的情况

  R3#show ipv6 route rip

  IPv6 Routing Table -default – 11 entries

  Codes: C – Connected, L- Local, S – Static, U – Per-user Static route

  B – BGP, HA – Home Agent, MR – MobileRouter, R – RIP

  H – NHRP, I1 – ISIS L1, I2 – ISIS L2, IA- ISIS interarea

  IS – ISIS summary, D – EIGRP, EX – EIGRPexternal, NM – NEMO

  ND – ND Default, NDp – ND Prefix, DCE -Destination, NDr – Redirect

  O – OSPF Intra, OI – OSPF Inter, OE1 -OSPF ext 1, OE2 – OSPF ext 2

  ON1 – OSPF NSSA ext 1, ON2 – OSPF NSSAext 2, l – LISP

  R   2001:A:A:12::/64 [120/2]

  via FE80::C802:22FF:FEF8:8,FastEthernet1/0

  via FE80::C801:39FF:FE8C:8,FastEthernet0/0

  R   2011::1/128 [120/2]//其跳数置为2,增加了1;

  viaFE80::C801:39FF:FE8C:8, FastEthernet0/0

  R   2022::2/128 [120/2]

  via FE80::C802:22FF:FEF8:8,FastEthernet1/0

  现将R1和R2、R3同时配置RIP协议,配置略,看看路由器R3上的路由的度量值情况与RIPng有什么不同,在R1和R3之间进行抓包如下:

  IPv6 RIPng和RIP 度量值分析

  在R1和R3之间抓包可知,R1通告给R3的1.1.1.1/32路由的跳数值为1,现在R3上查看路由表情况

  R3#show ip route rip

  Codes: L – local, C – connected, S -static, R – RIP, M – mobile, B – BGP

  D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area

  N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2

  E1 – OSPF external type 1, E2 – OSPF external type 2

  i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2

  ia – IS-IS inter area, * – candidate default, U – per-user static route

  o – ODR, P – periodic downloaded static route, H – NHRP, l – LISP

  + – replicated route, % – next hop override

  Gateway of last resort is not set

  1.0.0.0/32 is subnetted, 1 subnets

  R        1.1.1.1[120/1] via 13.1.1.1, 00:00:17, FastEthernet0/0 //其跳数值还是为1,R3并没有将其跳数值递增1;

  2.0.0.0/32 is subnetted, 1 subnets

  R       2.2.2.2 [120/1] via 23.1.1.1, 00:00:01, FastEthernet1/0

  12.0.0.0/30 is subnetted, 1 subnets

  R       12.1.1.0 [120/1] via 23.1.1.1, 00:00:01, FastEthernet1/0

  [120/1] via 13.1.1.1,00:00:17, FastEthernet0/0

  在R2上查看路由1.1.1.1/32的路由情况

  R2#showip route rip  //RIP路由表

  Codes: L – local, C – connected, S -static, R – RIP, M – mobile, B – BGP

  D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area

  N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2

  E1 – OSPF external type 1, E2 – OSPF external type 2

  i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2

  ia – IS-IS inter area, * – candidate default, U – per-user static route

  o – ODR, P – periodic downloaded static route, H – NHRP, l – LISP

  + – replicated route, % – next hop override

  Gateway of last resort is not set

  1.0.0.0/32 is subnetted, 1 subnets

  R        1.1.1.1[120/2] via 23.1.1.2, 00:00:28, FastEthernet0/0

  //其跳数为2

  3.0.0.0/32 is subnetted, 1 subnets

  R       3.3.3.3 [120/1] via 23.1.1.2, 00:00:28, FastEthernet0/0

  13.0.0.0/30 is subnetted, 1 subnets

  R       13.1.1.0 [120/1] via 23.1.1.2, 00:00:28, FastEthernet0/0

  IPv6 RIPng和RIP 度量值分析

  在R2和R3之间的接口抓包可知,R3将1.1.1.1/32通告给R2时,其将其度量值(跳数)加1之后,再传递给R2;

  R2#show ipv6 route rip //IPv6 RIP路由表

  IPv6 Routing Table – default – 7 entries

  Codes: C – Connected, L – Local, S – Static,U – Per-user Static route

  B – BGP, HA – Home Agent, MR – Mobile Router, R – RIP

  H – NHRP, I1 – ISIS L1, I2 – ISIS L2, IA – ISIS interarea

  IS – ISIS summary, D – EIGRP, EX – EIGRP external, NM – NEMO

  ND – ND Default, NDp – ND Prefix, DCE – Destination, NDr – Redirect

  O – OSPF Intra, OI – OSPF Inter, OE1 – OSPF ext 1, OE2 – OSPF ext 2

  ON1 – OSPF NSSA ext 1, ON2 – OSPF NSSA ext 2, l – LISP

  R  2001:A:A:13::/64 [120/2]

  via FE80::C803:35FF:FE30:1C, FastEthernet0/0

  R   2011::1/128 [120/3]//R1的环回接口路由跳数为3

  via FE80::C803:35FF:FE30:1C, FastEthernet0/0

  R  2033::3/128 [120/2]

  via FE80::C803:35FF:FE30:1C, FastEthernet0/0

  IPv6 RIPng和RIP 度量值分析

  从抓包结果可以看出来,R3将2011::1/128路由通告给路由器R2时,其度量值为2,而在R2的路由表中查看为其度量值为3,证明路由器R2将其度量值(跳数)递增1;

  总结:RIPng在传递一条起源路由(本路由器产生的)至邻居路由器时,其度量值为1,邻居路由器会将路由的度量值递增1,其实起源路由器将自已纳入到目的网络的跳数之内。而RIP是在路由起源的下一跳邻居路由器传递给他的邻居路由器时,才会将该路由的度量值递增1,而不把路由起源的路由器算在达到目的网络的跳数之内。这也是RIPng与RIP的最大不同之处。

    文章来源:http://muyun.blog.51cto.com/952166/1606069

上一篇:安卓防火墙 PS DroidWall

下一篇:IPv6的ACL配置及注意点